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_e values

transvernely isotropic media are presented Ln ter_s of

fiber volume fraction of a unidirectional fiberglass

co_oslte with *onstant matrix pro_er_!es and b _ _..6

_e_ween ex_enalonal moduli in the longitudinal and

of _hass velocltle_ of ultrasonic _ave; i._

the

epoxy

ratio

_ransverse

directions of the composite when the properties of the fibers are

changed, a_ a constan_ fiber volu_e fraction.

The model of a homogeneous transversely isotropic zedium is

adopted _o describe the relations between elastic properties and

4_velocities. The dlsplacememta due to an oso_Alatory _o!nt sourze

_n an infinite medium are used as one measure of comparison of

the behavior of the unidirectional composite accordlng to the

variations of _he parameters, as described above.

Values of phase velocities , elastic zodull, ?oieson's

ratios and displacements due to a point source can be read from

_he _arameterized plots for a knows f_be__ "'_._.u=e ...._O÷IC_ Or

known ratio between extensional _odull o_ the composlte .

Alternatively fiber volume fmactlon and the ratio between

ex_enslonal _odull can be inferre_ "-^- the _-+- _-_ +_ ',-_,,-_

of _he phase velocities are known; for example from experiments!

=easure_e_ts. Thus, such para=eterlzed curves say be useful In

nondestructive mechanical _ro;ert7 and =ateria _ _-_--_-_

charac_erlzations.
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IMTRODUCTION
in/__, _J ,i,

In composltea manufactured from continuous fibers,

ecAsotro_y often arises due to "'_ - "_- '

that the fiber stiffness is usually much larger than the matrix

stiffness. The homogeneous eiastlc properties of such composites

are usually represented by a oo_ple_# set of Independent _laitAo

cor_mtan_s _hich are expressed elther as a stiffness _trix or a

compliance matrix vhlch is deflned by the stress-stroln

rela+ionehips.

_hen a transversely Isotroplc :odel is adopted for

unidirectional composites, a complete se_ o£ elastic constants

consists of five independent elementi . ThesQ elasti_ oon_tantl

can be determlned a) experimentally elt_er directly by mechanical

testing or by phase velocity measurements of stress waves

propagatlng through the =aterAal [I-A_ or b) Theoretically by

the rule o£ mlx_ures, vhich combines the oiastic properties of

the components according to the the fiber volume fraction of

the final co=posits _5_.

In a unidirectional composlte, if either the fiber volume

fraction or the fiber propertles at a constant fiber volume

fraction are changed, the resulting changes 0£ :he ela_ "'_._

constants of the stiffness matrlz can be quantified. Further,

given _hs elastic constants, it is posslble to predict the

characteristics of stress _ave_ travelling through the -^_u_

such as phase velocities and displacements .

The assumption of a nondispersive medium is adopted in the

_resent study. In ter=s of stress wave _o_aga_ion, thi_ _ea,_



and

L °

that waves of different frequonotos, propagating along a given

bean aho.n that the phase velooitle_ can be expressed as

_unctlons of the angle _ ( that is, the angle between the normal

_e [rent of the propagating gave and the fiber _,._._,_J

the elastic constants when a nondlsperslve model is tdopted

In this worm _he elastic aoduli_

stiffness _atrlx, phase veiocAtles of longitudinal and

stress waves, and displaceaents due to an oscillatory

elan%is _ons_an_a o5 the

shear

;oint

source are related to two basic parameters of an unidirectional

eoapcsA_e • The two independen_ _arame_er_ under _oneAderat!on

are _he fiber volume fraction for a unidlrec_Aonal fiberglass

epoxy composite and the fiber properties for a unidlrec_ional

ooaposlte with a constant _bor volume _ra_tAo_ _ 0._ where the

the aetrix is epoxy •



OF FIBER VOLUME FRACTION

Elastic _ for Variable Fibe_r Yoluma Fraction

are

with different fiber volume fractions.

_he properties of the components are [?!

The valuel of the elastic constants of _he attf_n,_s matr_,z

generated _or a u_idirec_ional fiberglass epoxy composite

The values assumed for

Extensional modulus of the glass fiber: El= 72.40 C_/a 2

Extensional modulus of the epoxy _atr_x: Em= 5._ C_/m 2

Poisson ratio of the glass fiber: 0.22

Poisson ratio of the epoxy _atrix: 0.40

_enslty of the glass fiber: 0 = 2540 kg/m 3

Density of the epoxy matrix: 0m - 1250 kS/m 3

The fiber volume _caction is varied from zero (Isotrop!c

epo=y material) to I (Isotropic E g_sss fiber _ter_el). The

elastic moduli and the elastio constants of the stiffness matrix

co_respondlng to the various combinations of fiber and :a_rlz are

caAcula_ed using the rule of m!xt,,--e,_.,,_=! , The properties, are

re_erred _o a cartesian coordinate system zyz, in which z

coincides with the fiber directlon,(aee Yig._), and _he Love _

noCatlon la adopted _or the e!estic cons_ant_ o_ t_e stiffness

zatrix.

The resulting values for the elastic modull (E_, ix,Gzz and Gzy),

elastic constants of the stiffness _atrix ! _11: C_ C_3._ . C.._O

and C44 ) and Poisson's ratios ( _zz' __ and _ _ are shown
ZX Xy _

-- I I .........



in FlEa. 2, 3 and 4, respectively, all plotted vsreue _he fiber

volume fraction, Vf,

_hase Velocities for Variable Fiber Volume Fract!o_

Using the expressions determined previously for the phase

veloclt_es in transversely isotropic =edfa [6], %he values o£ _ns

velocities of SH,S7 and P plane waves wlth normals at 0°, 300,

45 O, 60 0 and 90 ° wlth respect to the fiber dlrectlon (z) are

calculated. The notations SH, $7 and P refer %0 the modes 0£

the propagating waves [6]. SH stands for a shear were with •

polarization direction that is al!weys parallel to the xy plane

(Fig.l) , SV stands for a shear wave wlth a polarization

direction that is el!ways In t_e _aze _lane _f _-^_--o_'_- --_

P stands for a long_tudina! wave with a polarization direction

that As allways in the same plane of propagation

reeuZ%in8 phase velocities are _hCw_ 4_ =4.=

fH, SV and P wevea, respectively .

[6] . The

_i#_lacements due to Oecl!la_or_ Point _ource for

Fiber Volume Fraction

The displacements due to an oa_tlla_rj _In_ #_ee in

infinite medium for points located along the principal directions

are also calculated. The theoretical formulation and solution of

_h_s problem were previously analyzed . Expressions _or %he

displacements were determined in terms of the elastic constants

Of the the stiffness matrix and the position of the point cf

II I



interest [9].

In _he present york At is assumed that the :_di'_ IS

subjected tO an oscAliatory p_lat force of unit amplitude ( I M )

at a frequency of 1 MHz which is located at the origin of the

coordinate systea. In the adopted coordinate syate_ the

o,cillatory loa_ As applied in the x direction, see FAg.8 . The

displacements are denoted by u_ v and _ corresponding to the

_A
directions defined by the coordinate axes x, y a.,_ :,

_espectively.

The dlsplacenents are calculated for points located along

_he coordinate axes at 2 • distances _rom the _^-_-''_a_-._^'-_- +_'----

coomdlna_e system adopted, these points are _efined by A_2,0,O),

B(O,2,0) and C(0,0,2) Zor the x, y and z dlreet£ons • (Refer to

FAg.l) • The contributions of the modes SH, SV and ? are

calculated separately • The dlspiaceaents are shown in Figs. 9,

10 and 11 for the polnts A, _ and C, respectively. Observe

_at dlsplaceaents other than u_ for points along the :oor_inate

axes, are zero or are ol a lower order of magnitude than u . The

displacements v and w are zero fo_ points in the xz and xy

planes, respectively, by reasons of loading symmetry. The

displacements v sn_ w for poln_s An 7z and xz planes,

respectively, are of a lower order of magnitude ;thus they are

neglected _n the asymptotic solution o_ the dAs;laoements due _o

a point source _9i.

..... ml I [I|



Direct_on__I o_ Maxiaua Displaceaen_s fc__._rSV Nod__e of Propagat2on

Depending on the specific values of _he elastic constants of

_he stiffness matrix, some ooapoaites produce s special _attern

of _ropsgat_on of the SV waves, the s_eoAal pattern of the

rave surface _or_espond - _ .....

is cha=acterAzed by an overlapping behavAor of _he wave front

_havAng two cuspidal edges) which occurs at certain angles vAth

respect to the fiber direction . A_ a _onsequen_e _ _he

geo=etrlc pattern of the M(SV) front, the dlsplace=ents for

points An the =edlue located along the lialtlng directions of the

_ave front cuspidal edges ccrrespon6 _o =axi=a _9_.

The liuitlng dlrectAons corresponding to the cus_!fla! e_ges

of _he SV =ode front were determined for various fiber volu=e

fractions . These are the directions of =axiaa _or _ispiace=ents.

The dArectlons are shown in FAg._Z, plotted versus fiber voluze

fraction V_. Observe that the =axi=u= posltAons flrst appear

at • fiber volu=e fraction of 0.07 and disa_pea_ _or _iber

volu=e fractions lar_er than 0,84 • So the range defining the

existence of overlap An the M(SV) wa_e surCace goes £ro_ V_=0.07

_o _f=O.B4 . For fiber _oiuae fractions saaiier than 0.07 or

larger _han 0._4, the co_poeite epproaches the IsotropAc behavio_

cf _he epoxy =affix or the glass flber =aterial, respectively, so

the directions of =axi=ua _Isplacemen_s a_e coAnc4_en_ _i_h %he

_irection z.



U_IDIRZCTIOHAL C_MPOSITE BEHAVIOR FOR VARIATIOM OF FIBER

PROPERTIES

The values Of the elastic properties are generated for

unAdirec_onal co=posites uith e_ozy as _he =_±z _ f!b_r_

v_th different ex_ens4onel sodull at the constant fiber yoluae

The values assu_ed for the properties el" thefraction of 0.60.

conponents are:

Ez_enslonal =odulus of the fiber: 5.0 GN/I 2= El= 500 CN/= 2

Extensional =odulus of the epoxy =afFiX:

PoAsson ratA= of the fiber_ 0.22

Poisson radio of the epoxy _atrix: 0.40

E . 5.59 cx/= 2
m

The density o£ the cosposAte is _ken as !_50 _g/z3 for the range

of fiber properties.

The elastic zodull, elastic oonetants of the stAf_neas

aa_rSz and Poisson's ratios corresponding to _he ?ariou_

oonbinations relultin_ f_om the variations of the fiber

propertles are calculated using the rule of =Ix_ures [2]. The

elastic constants of _he stiffness =a _-'- _ _ C ,
...* , _ , _2

C_5 and C44) and Polsson ratios ( '_xz' "_zx and _'x )' y

a=e shown in Figs. 13, and _, respectively, plotted versus the

Iongi_u_A_l and transverse directions, Ez/E x.

for the properties _ _he _iber are aasu=ed,

properties o_ the cc=_osi_e cover _he _ange

composite An _he

The values adopted

bu_ _he resulting

o_ _ro_er_Aes _

'-- " ,, E Ill II I II I I | I



ec l;ual coaj:osites.

Phases 7elocities fo___rVarlab!e Fiber Pro_ertles

The ezpresslons for phase v_!ocit!es of _ave_ in e

transversely isctropic medium are used for these calculations

!3j. Again, the values of the phase velocities are calculated

fo_ the directions of 0 °, 30 O, 4_ O, _v_n°a_d _n_°. _,,.6 r;_,-"_'--_._

values are shown in Figs. 15, 16 and 17 , for SH, SV and P waves,

respectively. The notation for the wave zones As in accordance

_A_h the previous sections.

Displace=ants du._._et_o

Properties

Oscillatory Poi;:t Source for Variable Fiber
i | m , i

The displacements for the points A(2,0,O), B(0,2,0) and

C(0,0,2) are again calculated for the same loading conditions

as de,cribed earlier. The resulting v_!uee for _he d!e_ 1_m_

are shown in FiBs 18, 19 and 20 for the points A, B an_ C.

Observe _hat displacements other than u, for points along the

coordinate axes, are zero or of a !o_er order of magnitud_ th_n

u. The displacements v and w are zero for points in the xz and

xy planes, respectively, by reasons of loading

displacements v and w for points in yz and

respectively, are of a lower order of magnitude;

neglected in the asymptotic solution of the displacements due

a poln_ source [9_.

symmetry. The

v_ nla_e_.

thus they are

to



DAre_____ ._Aon__s of Maximum DAsplao.ements fo.rr -..SV _M°de _°f Propagation

Following the same procedures used for the

volume freer!on calcuiations, the positions of maxima for

dAepZaoe_ents corresponding to _he SV _odo are _o_p_tad

variationa of the fiber elastic _ropertles. For zest of

range o£ _he fiber soduI£ considered, _he_e are directto_s

nazina, It was observed that the dirsctlons of

appear at a ratio of Es/Exa2,27 , (see ¥Ig.21)

beyond the upper limit of Ez/E x plotted.

7arlable fiber

the

A_A

_he

of

maxiaa fArst

and continue



co.___ccLusl

The graphs of phase valo_i_ie_ of $H and _ waves show _hat

the values of velocities increase a) with dscre_slng angle o_

the normal of the propagating wave with respect to _he z axis

(that is, _he fiber direction!; b) with increasing fiber volume

fraction, (Figs. 5 end 7)_ for the entire V_ r_n_e, txc;;t

for values of Vf <0.2 ; and c) with Inoreasing ratio

Ez/E x of the composite (See Figs. 15 and _7.) •

As opposed to the SH and P modes, the S7 _ode ve!oci_ies

increase with increasing angle of the normal to the wave front

with respect to the z axis, until 60 ° , and then decreases until

90 °, where the values of velocity are -6"_''"..... +_e _a:e _s "-- "_

o° direr%ion ( see Pigs. 6 and 16). Equal velocities for 0° and

90 ° is a resul_ of the transversely ieotroplc model adopted to

describe the composite.

The displacements for the points £, B and C show a decrease

a) wlth increasing Yf (Figs. 9, 10 and 11; except for 9 waves

An %_e region defined by Vf < 0.2 );

as shown in Figs. 18, 19 and 20.

The typical decreasing of

_ncreasAng flber volume fraction

corresponding increases in the

all displacements versus

elastic constants of the

8tlffness.matrlx ,Figs. 3 and 13. There is an exception, however,

An the behavior of the u dlaplace=e_t at _^'_*

in Fig.3 _he properties C11, C12 and CI_

increasing Vf, from Vf=O to Vf=0.2 which

pattern

_o_ @_

decrease for

Jus_Ifles the

of u dlsplace=ents for the ;oln: A .'-,,the- ....o°-_--:nge.. - _,_'.

I0



variation of Vf, see Fig. 9. _n the case of the var£atlon of

Ez/E x, all elastic constants of the m_ffnass matrix, ace Fig.13,

£noreale for _,he entire range ana!y _-_ -_ _ha_ _e ¢or_e_pon_&n_

u displacements , see Fi_s. 18, 19 and 20 , also lnoreale in all

the Ez/E x range.

The _osAtione of maxima * " _--_ .......... r ...... o

to SV _rovlde s basis for determining if and where _he

overlapping phenomenon of the W(SV) wave surface occurs, for

known values of Vf or Ez/E x. If _he phenomenon of the

cuspAdal ovarlapping is capable of belng detected experimentally,

it would then be possible to estimate the values of Vf and Ez/E x

from FAgs.4 ,5 ,6 and 1_,

from FAgs. 9, 10, 11

meamurements.

1_, 17 _or velocity -*_-,,--men_e an_

and 18, 19, 20 for dlsplacement
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Fiber volume fraction, "_

4 Variation
fiberglass

fraction.

direction;

of _oisson's ratios in unidirectional

epoxy composite versus fiber volume

First index indicates deformation

second Andex ind!oates load direction).
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Fig ° Schematic illustra_ing slnusoidal point load

ezciting an infinite transversely laotroplc

medium, where zy is isotroplc plane in cartesian
coordinate system defined by (z,y,z).
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